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Overview

Timeline

* Project start date
— May 2005

* Project end date
— May 2007

» Percent complete: 0%

Budget
» Total project funding

— DOE share
— Contractor share

* No FY04 Funding

* Funding for FYO05
— None YTD

Barriers Addressed

H, from natural gas or renewable liquids
— A — Capital Cost
— E - CO, emissions
H, generation by water electrolysis
— G —Capital Cost
— H — System Efficiency
— I — Grid Electricity Emissions
— J— Renewable Integration
— K — Electricity Cost

Partners
Ceramatec, Inc.
* Hoeganaes
Idaho National Laboratory
* University of Washington
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Project Objectives

Project Challenges Overall Concept Specific Activity Team
Objectives Members
* Low cost * Thermal Physical, chemical | Substrate alloy Ceramatec/
hydrogen Management and thermal selection / Hoeganaes
generation (operational integration of fuel fabrication
N : limit) cell/e.l ectrolysis Layer Deposition - | INEEL
Cogeneration functions — allows Thermal Spray
of hydrogen | * Cell size operation at near ,
and electricity | (fabrication thermal neutral Slurry coating and Ceramatec/
limit) condition c.onstljalned U of WA
sintering
Large area cell Materials Selection | Ceramatec
fabrication by the | Stack Test
use of porous metal | Process Model
substrate /Data Analysis
Cost Analysis All
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Process Objectives

Process objectives Hybrid design Key benefits
features

Direct PEM grade Steam electrolysis No shift or CO cleanup required
H,
Electric power Interleaved SOFC cells | Co-generation of hydrogen and electricity
Eliminate POx Electrochemical High Faraday and Nernst efficiencies
penalty process
Thermal Thermal integration Temperature/resistance uniformity, reduced
management thermal stress and air preheat duty, large area cells
Design flexibility Cell function ratio Selective energy partitioning, Hj:electric power

ratio

Carbon sequestration

Nitrogen free reformate

Non-condensable free exhaust




ceramatec

ADVANCED MATERIALS & ELECTROCHEMICAL TECHNOLOGIES

Technical Approach
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» Leverage SOFC Development
* Integrated Hybrid Stack

 Continuous H, Cogeneration

* Natural Gas Fueled

* Optimized Thermal Management
*Enables Large Area Cell °
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Technical Accompllshmentsl Progress

Demonstrated >100 nlph hydrogen production
in stack at INL (DOE NE NHI program)

Operated advanced high performance cathode
supported LSGM electrolyte 1n electrolysis

modc

le (DOE FE SBIR)

Adc

ressed seal accelerated corrosion issue

under electrolysis conditions (DOE Membrane
Seal SBIR)

Characterized metal interconnect scale growth

in dual (reducing/oxidizing) atmosphere
conditions (DOE SECA CTP project) :
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Future Work

* Begin project per proposed work scope
— Review objectives with team members
— Produce powder metal heats
— Form sintered porous metal plate substrate
— Pre-treat PM substrate for low resistance scale
— Develop thermal spray deposition of cell layers

— Develop thermal crack healing for gas tight
membrane

— Begin electrochemical characterization of PM
supported cells 1n electrolysis mode
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* High temperature Solid Oxide Fuel Cells (SOFC)

— Generation of electricity and heat
— Hydrogen or hydrocarbon reformate fuels

« High Temperature Electrolysis (HTE)

— Reversed SOFC current generates hydrogen from steam

* Commonality of SOFC & HTE

— Material sets, fabrication methods, stack design, modeling

— Performance
» Seamless transition between operating modes

* Multi-mode technology for transition to hydrogen economy
 Transitional technology
— Distributed power generation using hydrocarbon fuels

* End point technology
— Hydrogen fuel production from renewable energy or nuclear energy
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Ceramatec SOFC Histo

* 19 years of SOFC R&D

200 Cell Stack 100 Watt 1.5 kWatt 1.2 kW Unit
at ABB, Direct CH, PNG Unit POx reformed
Switzerland Diesel / Kerosene

l 90 92 96 l 98

###

McDermott
Ceramatec DARPA

GRI

Co-fired
Trilayers

-y SBIR & SECA Contracts

McDermott
DOE-NETL
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Recent SOFC-derived Contracts

* DOE-FE - SBIR

— High Temp. Heat Exchanger Phase 11
— Hydrogen Separation Membrane Phase 11
— Intermediate Temp. SOFC Phase 11
— SOFC Insulation Material Phase 11
— Glass composite seals Phase I
— Improved Cathodes for SOFC Phase I

— Pre-ceramic polymer seal for SOFC  Phase I

 DOE-FE (non-SBIR)
— Metal Interconnects for SOFC (SECA)Phase 11
Initial work done under an SBIR-Phase I
— SECA 1ndustrial team participation Phase I
Cummins-SOFCo team subcontract

current
current
Aug 04 end
awarded
awarded
complete
complete

current

4 Years

10
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Recent SOFC-related Contracts

* NASA - SBIR

— Integrated SOFC System  Phase II current
 Electrolysis/SOFC hybrid cogeneration of H, & Power

 Air Force SBIR

— Integration of JP-8/diesel reformer and SOFC
Phase II awarded

* DOE-FE SBIR

— Environmental Barrier Coating Phase II

Application of metal interconnect technology from Phase I
SBIR and Phase I SECA

11
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Investments in R&D Infrastructure

* 90,000 ft> Manufacturing and R&D
Facility

e Start to Finish Ceramic Processing

— Lab-Scale to Pilot-Scale to Production

— Class 10,000 Clean room

 Well equipped Materials R&D
Characterization Laboratory

by ¥

Sintering
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Investments in Background Technology

* Nearly $100 million invested over 20 years
— DOE & DOD funding

— Utility R&D Groups
 EPRI & GRI

— Industry consortium
e NorCell - Norsk Hydro, Saga Petroleum, Elkem, NTNF

— Ceramatec partners
* McDermott/SOFCo
» Air Products

— Ceramatec

» Technology and facilities available to this project.

13



, - _____Ceramatec
Ceramatec’s Core Activities -

Inteqrated Engineering, Processing and Prototypinc

Maximurn Effective Surfoce Streas

DESIGN &

T m | ENGINEERING
L { .!! | DESIGN
U Sstal \ A IDATION

&
PROTOTYPING

gjl PROCESSING TESTING

| DEVELOPMENT
(Lab to Pilot Production)

14
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SOFC Performance in Reversible Mode

Reversible SOFC Electrolysis
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Inaugural INL Project Stack Test
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Electrolysis Stack #410

Fall 2003
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DOE-FE SBIR: Intermediate Temperature Fuel Cell (LSGM)

Cell Voltage
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Thermal Management Impacts Cell Size

» Heat rejection limits size of SOFC
— TAS term 1s exothermic in SOFC mode
— TAS term 1s endothermic 1n electrolysis mode
— I?R is exothermic for both modes

— Models show counteracting 74S and I°R terms
simplifies operation 1n electrolysis mode

 Current fabrication methods also limit size

» Large area fabrication route needed for
electrolysis cells (e.g. 1 m? active area cells)

18
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Excess Air Required to Cool 10cm Metal Icon Stack
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Maximum Temperature (K)
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Effect of Interconnect Material on Stack Cooling
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Difficulty in Cooling Stacks of Large Area Cells
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High Temperature Electrolysis Operatlon At V

min: 1 10e+03. node 1474597 Temperature
max: 1.10e+035, node 114234 1 10e+03
V,, = 1288V

[ =21.37A

T=1100K

Feed: H,O:H, 90:10 4.39e-6 mol/sec-channel
10% of SOFC Air 4.2e-6 mol/sec-channel

Isothermal

HTE Cperatian at Win
t = 1.00000e+00
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HTE Operation Above V

rhin: 1.1 7e+03, node 114234 Temperature
rmax: 1.12e4+03, node 150661 112e+03
V=145V
I =3387A
T=1100K

Feed: H,O:H, 90:10 6.60e-6 mol/sec-channel
10% of SOFC Air 4.2e-6 mol/sec-channel

1 10a+03

Exotherm produces ~ 10°C temperature rise

HTE Cperation at 1 45V
t = 1.00000e+00
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HTE Operation Below V

rmin: 1.0392+03, node 148765

Termperature
max: 1.10e+03, node 114234 1 10403
V=115V
I =1149 A
T=1100 K
Feed: H,0O:H, 90:10 3.00e-6 mol/sec-channel
10% of SOFC Air 4.2e-6 mol/sec-channel
1 09e+03
Endotherm produces ~ 8°C temperature drop

HTE Operation at 1.115Y
t = 1.00000e+00
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SOFC Operating Point

rrin: 1.12e+03. node 114234 Termperature
max: 1.19e+03, nade 150088

Vo =0.65V

I =21.02A

T=1100K

Feed: H,0O:H, 10:90 4.39¢-6 mol/sec-channel
Full SOFC Air 4.2e-5 mol/sec-channel

119e+403

111e+03

SOFC Operation at 0.5V — no end heat loss
t = 1.00000e+00
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Project Summary

DOE Hydrogen Production & Delivery Research

— 4 Team Members
« Ceramatec, lead, cell testing, metal coating
* Hoeganaes, metal powder and foams
* INEEL, thermal spray processing
e Univ. of Washington, constrained sintering

— Develop processes scalable to 1m? active area

— Cell design based on thermal spray process using porous
powder metal substrate

— Industry Cost Share > 20%
— Non-nuclear power based electrolysis

 Distributed co-generation of hydrogen and electric power

 DOE Power Park concept ’
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Publications and Presentations

Related Electrolysis Programs (None yet on this program)

National Hydrogen Association SBIR Workshop April 1, 2005
ASME 3 Int. Conf. On Fuel Cell Sci. Ypsilanti, MI, May 2005
University of Utah Graduate Seminar — Feb 2005

Joint IEA/AIE Workshop, San Antonio Nov 2004

European SOFC Forum, Lucerne Switzerland, Jul 2004
NURETH-11, Avignon France, Oct 2005

27
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Hydrogen Safety

The most significant hydrogen hazard
associated with this project is:

Fire.

Hydrogen which has leaked into air is easily ignited by

any hot or clean metal surface. This is a concern in and
around the room temperature piping. Leaks in the high
temperature portions of the process will burn of course,
but in areas designed for high temperatures. In addition,
leaks there cannot build up in concentration as they react
in a diffusion flame sheet as quickly as the hydrogen can
diffuse to oxygen. A potentially greater hazard is a cold
leak that spreads to a large area before igniting, which
could overpressure parts of the structure.

28
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Hydrogen Safety

Our approach to deal with this hazard is:

» Qutside cylinder storage & pressure relief
* Metal piping — leak test

* Point of use flow restriction orifices

* High capacity ventilation system

* Fusible link valve closure

» Hydrogen/Combustible gas sensor/alarm
* Power failure gas cutoff

* Sprinkler system

29
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Questions?

e Contact: Rich Bechtold at 301-429-4566,
richard.bechtold(@qgssgroupinc.com or Melissa
Lott at 301-560-2214,
Mlott(@qgssgroupinc.com

30
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